2023년도 제11회 한국유체기계학회 유체기계 핵심기술 강습회

주 제 4차 산업혁명을 선도하는 스마트 유체기계

일시 2023년 8월 17일 (목) ~ 18일 (금) 09:00~16:40

장소 연세대학교 신촌캠퍼스 (제4공학관)

주관 한국유체기계학회

한국유체기계학회 회원여러분께,

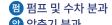
한국유체기계학회 주관 하에 분과통합으로 진행 예정인 2023년 유체기계 핵심기술 강습회가 '4차 산업혁명을 선도하는 스마트 유체기계'를 주제로 8월 17일 (목)부터 18일 (금)까지 2일간 연세대학교 신촌캠퍼스에서 개최됩니다.

올해는 펌프 및 수차, 송풍기 및 환기시스템, 가스/스팀터빈, 압축기, 회전체동역학, 집단에너지 열수송, 스마트전동력구동기 등 7개 분과 및 연구회에서 4차 산업혁명을 선도하는 스마트 유체기계의 설계, 해석, 성능시험/평가 등의 핵심기술과 함께 산업현장에서 실제 경험에 기반한 개발/적용/진단 사례 등을 중심으로 다양하고 알찬 내용의 강습회를 마련하였습니다.

유체기계 분야 전문가들을 모시고 유체기계에 대한 설계, 운전, 연구개발 실무를 주제로 한 전문적인 강의를 진행할 계획이오니 한국유체기계학회 회원, 관련 분야 종사자, 연구원 및 학생 여러분들의 많은 관심과 참여를 부탁드립니다.

유체기계 핵심기술 강습회 조직위원장 최영도 한국유체기계학회 회장 최영석

🖽 펌프 및 수차 분과


송 송풍기 및 환기시스템 분과

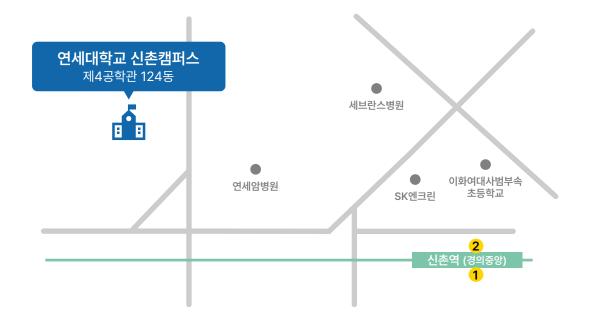
회 회전체동역학 분과

강의실 시간	제 1 강의실 D503호, 97명	제 2 강의실 D504호, 97명	제 3 강의실 D502호, 70명
08:30~09:00		등록	
09:00 ~ 10:30	원심압축기 1차원 성능예측 방법 🕢	해석기반 펌프 디지털 트윈 구현 및 개발 📳	유체부하용-전동기 고효율설계 및해석기술 📤
	본 강의에서는 1차원 유체역학 적 해석기법을 활용하여 가스터 빈/터보차저용 원심압축기 성능 을 예측하는 방법을 설명하고 예 제 풀이를 통해 학습함.	본 강의에서는 유한요소 해석기 반 펌프 시스템의 디지털 트윈 구현을 소개하고, 디지털 트윈의 정의 및 개발 프로세스를 설명함	송풍기, 펌프, 압축기 등 유체기 계 구동을 위한 전동력 기기의 효율향상 방안 및 기술동향 소개
	한국항공우주연구원 강영석 박사	(주)디엔디이 이동화 이사	한국전자기술연구원 서정무 센터장
10:30~10:50	Coffee Break		
10:50 ~ 12:20	연성강성항과 연성감쇠항이 회전체 진동특성에 미치는 영향 <u></u> 3	기술 및 산업 융합에 의한 펌프의 진화 🖲	
	연성강성항과 연성감쇠항이 회 전체 진동특성에 미치는 영향에 대해 학습함.	가상현실(VR), 증강현실(AR), loT, 빅데이터, 인공지능, 에너지 절감과 관련한 기술이 펌프산업분야의 변화에 미치고 있는 현황을 소개하고 앞으로 나아갈 방향을 제시함	KSFM
	부산대학교 서준호 교수	효성굿스프링스(주) 이규한 PM	
12:20~13:20		중 식 (장소 : 구내식당)	
	선회실속 해석 및 실속마진 개선 방법 😩	펌프 소음/진동 스마트 고장예지 및 상태 모니터링 📳	
13:20 ~ 14:50	축류압축기 및 원심압축기에서 발생하는 선회실속을 수치적으 로 해석한 사례 및 실속마진 개 선 방법 소개	· 펌프의 진동평가 및 규격 · 펌프의 진동분석 기법 · 고장예지 및 상태모니터링 기술	KSFM
	명지대학교 최민석 교수	신호이앤티(주) 이소환 대표	
14:50~15:10		Coffee Break	
15:10 ~ 16:40	저레이놀즈 수가 압축기 성능에 미치는 영향 알 축류압축기 및 원심압축기에서 저 레이놀즈가 성능 및 유동현상 에 미치는 영향	수력발전소(수차) 및 양수발전소(펌프수차) 스마트 시스템 도입 및 활용 图 1. 수력/양수 발전소 현대화 및 신규건설 현황 2. 스마트기술을 활용한 한수원 수력발 전소 원격운영시스템 소개와 양수발 전소 예측진단 플랫폼 개발현황 소개	KSFM
	명지대학교 최민석 교수	한국수력원자력(주) 박준관 부장	

가스/스팀터빈 분과

강의실 시간	제 1 강의실 D503호, 97명	제 2 강의실 D504호, 97명	제 3 강의실 D502호, 70명		
08:30~09:00	등록				
	머신러닝 기반 원심압축기 형상 최적화를 통한 효율 향상 铅	산업용 송풍기의 설계방법과 현장적용 🎒	열수송관수명예측기술및 운영온도가수명에미치는영향 (월		
09:00 ~ 10:30	터보기계 설계 절차 및 방법에 대한 내용과 머신러닝 기반 원심 압축기 성능 향상을 위한 형상최 적화에 대한 내용을 다룸	산업용 송풍기의 설계방법과 산 업현장에서 발생되는 문제점 및 해결방법 제시	· 열수송관의 구성부품 및 설계· 운영 특성 설명 · 노후 배관의 수명평가 기준 정 립을 위한 국제 연구 동향 소개		
	한국기계연구원 정희찬 박사	㈜삼원이앤비 양상호 부사장	한국지역난방공사 김주용 박사		
10:30~10:50	Coffee Break				
	터보기계 축하중 설계/해석 및 베어링 오일누설 방지 설계 🕢	스마트 진동 기술을 적용한 송풍기 최적 관리 및 현장 진동 개선 사례 🔕	지역난방 열수송관망 디지털 진단·관리체계 도입 및 활용 현황 (3)		
10:50 ~ 12:20	이차유로의 설계 분야 전반을 간 단히 소개하고, 그 중 축하중 해 석과 윤활시스템 오일누설 방지 설계 방법을 실제 사례를 바탕으 로 설명함	진동 기초 기술 습득과 최신 지능형 스마트 진동 측정 기술 및 송풍기 ISO 국제 규격 적용을 통한 송풍기 승인 시험 방법과 송풍기 진동 문제 개선 사례	· 디지털 기반 열수송관 진단 신 기술 도입 사례 · 통합 공간정보 플랫폼 기반 열 수송관망 관리체계 구축 사례		
	한화에어로스페이스 조건환 박사	㈜인페이스 정주택 대표	한국지역난방공사 김한교 팀장		
12:20~13:20	중 식 (장소 : 구내식당)				
	가스터빈 터빈단 공력설계 🗿	송풍기 시험방법과 효율등급제 송			
13:20 ~ 14:50	가스터빈의 개발 기획부터 설계, 제작, 시험 및 시운전까지 각 단 계별 터빈 공력 엔지니어의 역할 과 중요성을 현업 엔지니어의 경 험 중심으로 설명함	· 송풍기 시험방법 및 FEG 산정 방법 · FEG에 따른 원심식 송풍기 효율등급	KSFM		
	두산에너빌리티 김진욱 박사	KTC 이봉수 센터장			
14:50~15:10	Coffee Break				
	극저온 구름베어링 시험장치 개발 <u>③</u>				
15:10 ~ 16:40	· 극저온 구름베어링 개요 · 시험장치 개발 사항 · 해석 결과 및 논의 · 성능 실험 및 논의	KSFM	KSFM		
	한국생산기술연구원 최복성 박사				

구분	등록비	구분	등록비
일반 (회원)	사전 : 20만원(1일) 35만원(2일) 현장 : 25만원(1일) 40만원(2일)	일반 (비회원)	사전 : 25만원(1일) 40만원(2일) 현장 : 30만원(1일) 50만원(2일)
학생	사전 : 10만원(1일) 15만원(2일) 현장 : 15만원(1일) 20만원(2일)	* 등록자에게는 교재 및 중식이 제공되며, 강습회 수료증이 수여됩니다. * 비회원으로 등록 시 1년간 한국유체기계학회 회원 혜택 이 부여됩니다.	


꽃 사전등록 링크

학회사무국 https://ksfm.org/115

- * 사전등록 마감일은 7월 31일 (월요일)입니다.
- * 상기 링크를 클릭하신 후 **2023년도 한국유체기계학회 유체기계 핵심기술 강습회(사전등록)**을 선택하신 다음, 해당되는 등록비를 선택하신 후 등록을 진행해 주시기 바랍니다.

❷ 강습회 오시는 길

* 연세대학교 신촌캠퍼스 제4공학관(124동 강의실 D502호, D503호, D504호)으로 오세요.

☆ 조직위원회

위원장

최 영 도 국립목포대학교

위원

강 영 석	한국항공우주연구원	구 본 찬	
김 경 엽		김 진 혁	한국생산기술연구원
김 진 형	중소벤처기업연수원	서 준 호	부 산 대 학 교
양 성 진	한국전자기술연구원	양 창 조	국립목포해양대학교
. – –	코 리 아 아 마 스	이 기 영	한국지역난방공사
	한 국 기 계 연 구 원	주 원 구	

● 문의처

사전등록 및 행사진행

학회사무국 **정예은 과장** 02-563-1867 | ksfm@ksfm.org

기타 행사관련 문의

김진혁 박사

010-4387-0508 | jinhyuk@kitech.re.kr

구본찬 박사

010-3158-2406 | b98265300@gmail.com

